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Abstract: We develop a higher-order method for non-paraxial beam
propagation based on the wide-angle split-step spectral (WASSS) method
previously reported [Clark and Thomas, Opt. Quantum. Electron., 41, 849
(2010)]. The higher-order WASSS (HOWASSS) method approximates the
Helmholtz equation by keeping terms up to third-order in the propagation
step size, in the Magnus expansion. A symmetric exponential operator split-
ting technique is used to simplify the resulting exponential operators. The
HOWASSS method is applied to the problem of waveguide propagation,
where an analytical solution is known, to demonstrate the performance
and accuracy of the method. The performance enhancement gained by
implementing the HOWASSS method on a graphics processing unit (GPU)
is demonstrated. When highly accurate results are required the HOWASSS
method is shown to be substantially faster than the WASSS method.

© 2013 Optical Society of America

OCIS codes: (000.4430) Numerical approximation and analysis; (080.1510) Propagation
methods; (080.1753) Computation methods; (350.5500) Propagation.

References and links
1. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743–1745 (1992).
2. K. Q. Le, R. Godoy-Rubio, P. Bienstman, and G. R. Hadley, “The complex Jacobi iterative method for three-

dimensional wide-angle beam propagation,” Opt. Express 16, 17021–17030 (2008).
3. Y. Y. Lu and P. L. Ho, “Beam propagation method using a [(p−1)/p] Padé approximant of the propagator,” Opt.

Lett. 27, 683–685 (2002).
4. A. Sharma and A. Agrawal, “New method for nonparaxial beam propagation,” J. Opt. Soc. Am. B 21, 1082–1087

(2004).
5. A. Sharma and A. Agrawal, “Non-paraxial split-step finite-difference method for beam propagation,” Opt. Quan-

tum. Electron. 38, 19–34 (2006).
6. C. D. Clark and R. Thomas, “Wide-angle split-step spectral method for 2D or 3D beam propagation,” Opt.

Quantum. Electron. 41, 849–857 (2010).
7. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order

for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53–58 (2004).

#187594 - $15.00 USD Received 25 Mar 2013; revised 24 May 2013; accepted 14 Jun 2013; published 25 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015815 | OPTICS EXPRESS  15815

Distribution A: Approved for public release, distribution unlimited (approval given by Public Affairs Office TSRL-PA-12-0068



8. W. Magnus, “On the exponential solution of differential equations for a linear operator,” Comm. Pure Appl.
Math. 7, 649–673 (1954).

9. M. Bauer, R. Chetrite, K. Ebrahimi-Fard, and F. Patras, “Time-ordering and a generalized Magnus expansion,”
Lett. Math. Phys. 103, 331–350 (2012).

10. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

1. Introduction

Beam propagation methods (BPM) are a large class of numerical methods for solving the scalar
Helmoltz equation, and are popular for simulating guided waves and laser beams, as they are
typically both fast and efficient. Early methods made use of the paraxial approximation, which
greatly simplifies the problem by reducing the propagation equation to first order. However,
these methods were severely limited in their application. Any beam profile containing spatial
frequencies with angles greater than a few degrees, with respect to the propagation axis, incur
significant phase errors. Many methods have been developed to drop the paraxial approximation
and include wide-angle waves. In several of these, the Helmholtz equation is formally rewritten
as a first-order differential equation which includes the square root of an operator. The square
root operator is either approximated using real or complex Padé approximants and a finite-
difference or iterative method is used to solve the equation [1, 2], or the analytical solution is
found which results in an exponential of the square root of an operator that is approximated
with a Padé approximant [3]. Recently, Sharma extended an operator-splitting technique used
on the paraxial wave equation to the non-paraxial wave equation (Helmholtz equation) [4]. The
splitting allows diffraction and the refractive index variations to be handled separately. Various
numerical methods can be used once the operator has been split, such as collocation or finite-
difference [4, 5].

In a recent publication, we described a numerical beam propagation method that represents
the beam profile in the basis of the eigenvectors of the Laplacian operator and uses a symmetric
operator splitting technique to account for the refractive index variations, known as the wide-
angle split-step spectroscopic (WASSS) method [6]. In general, the method provided a two-fold
speedup to the finite-difference method reported by Sharma [4] This improvement could be
increased by use of a fast Fourier transform algorithm. Here we develop a higher-order WASSS
(HOWASSS) method that extends the approximation to higher-order, providing a more efficient
method when high accuracies are required. We apply the HOWASSS method to the problem
of waveguide propagation to demonstrate the performance and accuracy of the method. An
additional performance enhancement is obtained by implementing the method on a graphics
processing unit (GPU) using compute unified device architecture (CUDA) technology from
NVIDIA™.

2. Formulation

Beam propagation in a medium with a non-uniform refractive index is described by the scalar
Helmholtz equation,

∂ 2

∂ z2 ψ (z,r)+∇2
rψ (z,r)+ k2

0n̄2ψ (z,r)+ k2
0

(
n2 (z,r)− n̄2)ψ (z,r) = 0, (1)

where ψ (z,r) is the complex scalar electric field, z is a Cartesian coordinate in the direction
of propagation, r are the transverse coordinates, and ∇2

r is the transverse Laplace operator.
As usual, k0 is the free space wavenumber, n(z,r) is the refractive index distribution, and
n̄2 = min

[
n2 (z,x)

]
. For simplicity we will only consider the two-dimensional (2D) case, how-

ever generalization to three dimensions (3D) follows quite trivially. In two dimensions, the
electric field is denoted ψ (z,x). Note that x is not necessarily a Cartesian coordinate but could,
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for example, be a radial coordinate. Expanding ψ (z,x) in terms of the eigenfunctions of the
transverse Laplace operator we write

ψ (z,x) = ∑
i

ai (z)φi (x) , (2)

where

∇2
xφi (x) =−λ 2

i φi (x) (3)
∫

φ ∗
i (x)φ j (x) dx = δi, j. (4)

Multiplying the 2D form of Eq. (1) by φ∗
j (x), integrating over the transverse coordinate, and

applying Eqs. (3) and (4) we are left with

∂ 2

∂ z2 a j (z) =−(k2
0n̄2 −λ 2

j

)
a j (z)−∑

i
ai (z)

∫
k2

0

(
n2 (z,x)− n̄2)φ ∗

j (x)φi (x) dx. (5)

To discretize the problem space, let Nx and Nz be the number of discrete grid points in x and
z respectively, and let i, j ∈ [1,Nx], and l ∈ [1,Nz]. We let xi = iΔx+x0 and zl = lΔz+ z0, where
Δx and Δz are the corresponding step sizes. The matrix N(z) is defined by

Ni, j (z) = k2
0

(
n2 (z,xi)− n̄2)δi, j. (6)

The discrete eigentransform matrix, S [6], transforms a vector into the spectral basis, while S−1

transforms vectors back into the spatial basis. In the case of Cartesian coordinates with hard
boundary conditions this matrix becomes the discrete Fourier transform matrix, and in cylin-
drical coordinates with azimuthal symmetry and hard boundary conditions, S takes the form of
a discrete Hankel transform [7]. We also must define the constant matrix M with elements

Mi, j =
√

k2
0n̄2 −λ 2

i δi, j. (7)

Notice that if λi > k0n̄ then Mi, j becomes imaginary. If we allow eigenvalues such that λi > k0n̄,
then the trigonometric functions appearing in P will become hyperbolic (see Eq. (25)), making
the method numerically unstable. For this reason, we will limit Nx to satisfy λi < k0n̄. However,
we must include at least enough eigenfrequencies to sufficiently represent the initial conditions,
otherwise large errors will be incurred. Using these definitions Eq. (5) becomes

∂ 2

∂ z2 a(z) =−M2a(z)−SN(z)S−1a(z) . (8)

Now if we define

A(z) =

[
a(z)

M−1 ∂
∂ za(z)

]
(9)

H(z) =

[
0 M

−M−M−1SN(z)S−1 0

]
, (10)

we can write the Helmholtz equation as a first order vector differential equation

∂
∂ z

A(z) = H(z)A(z) . (11)

#187594 - $15.00 USD Received 25 Mar 2013; revised 24 May 2013; accepted 14 Jun 2013; published 25 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015815 | OPTICS EXPRESS  15817

Distribution A: Approved for public release, distribution unlimited (approval given by Public Affairs Office TSRL-PA-12-0068



The exact solution to Eq. (11) is given by a Magnus expansion [8],

A(z) = exp
(
Ω1 (z,z0)+Ω2 (z,z0)+ · · ·)A(z0) . (12)

The first two terms of the expansion are

Ω1 (z,z0) =
∫ z

z0

H(t) dt (13)

Ω2 (z,z0) =
1
2

∫ z

z0

∫ t1

z0

[H(t1) ,H(t2)] dt2 dt1. (14)

Here [H(t1) ,H(t2)] is the usual commutator. Note that Eq. (11) is essentially the time-
dependent Schrödinger equation, in which context the Magnus expansion is more well-known
as the time-ordered exponential operator [9]. However, we will refer to Eq. (12) as a Magnus
expansion to be consistent with discussions concerning initial value problems of the form of
Eq. (11).

H(z) can be written as the sum of two matrices, one that is constant and one that depends on
z,

H(z) = H1 +H2 (z) =

[
0 M

−M 0

]
+

[
0 0

−M−1SN(z)S−1 0

]
. (15)

Using this and the trapezoid rule to approximate the integral in Eq. (13) we obtain,

Ω1 (zl+1,zl) = H1Δz+
(
H2 (zl+1)+H2 (zl)

)Δz
2

+O
(
(Δz)3

)
. (16)

To approximate Ω2 (zl+1,zl) we first need to compute the commutator. After making use of Eq.
(15) and simplifying we find

[H(z1) ,H(z2)] =

[
S
(
N(z1)−N(z2)

)
S−1 0

0 M−1S
(
N(z2)−N(z1)

)
S−1M

]
. (17)

Note that [H2 (z1) ,H2 (z2)] = 0. We apply the trapezoid method twice to approximate the double
integral in Eq. (14) and obtain

Ω2 (zl+1,zl) = [H(zl+1) ,H(zl)]
(Δz)2

8
+O

(
(Δz)3

)
. (18)

The next term in the Magnus series will contribute a factor of (Δz)3 as it involves a triple
integral. Keeping terms up to (Δz)3

A(zl+1)≈ exp

(

H1Δz+
(
H2 (zl+1)+H2 (zl)

)Δz
2

+[H(zl+1) ,H(zl)]
(Δz)2

8

)

A(zl) . (19)

Because this contains the exponential of a dense matrix, which is difficult to handle numerically,
we will split this exponential into a form that will be easier to work with via the symmetric
exponential splitting technique

exp((A+B)Δz) = exp

(
A

Δz
2

)
exp(BΔz)exp

(
A

Δz
2

)
+O

(
(Δz)3

)
. (20)

First, we split the Δz terms in the exponential from the (Δz)2 terms. Then we split the terms
involving H1 from those involving H2, and we are left with

A(zl+1)≈ PQ(zl+1)Q(zl)PC(zl+1,zl)PQ(zl+1)Q(zl)PA(zl) , (21)
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where

P = exp

(
H1

Δz
4

)
(22)

Q(z) = exp

(
H2 (z)

Δz
4

)
(23)

C(z1,z2) = exp

(

[H(z1) ,H(z2)]
(Δz)2

8

)

. (24)

Each operator P, Q(z), and C(z1,z2) can be expressed by a 2 × 2 block matrix where the
matrices within each operator are diagonal. This allows the exponential operators to be simply
evaluated by expanding the exponential into its power series

P =

[
cos
(
M Δz

4

)
sin
(
M Δz

4

)

−sin
(
M Δz

4

)
cos
(
M Δz

4

)
]

(25)

Q(z) =

[
I 0

−M−1SN(z)S−1 Δz
4 I

]
(26)

C(z1,z2) =
⎡

⎣
Sexp

((
N(z1)−N(z2)

) (Δz)2

8

)
S−1 0

0 M−1Sexp
((

N(z2)−N(z1)
) (Δz)2

8

)
S−1M

⎤

⎦ . (27)

Now all matrices inside of functions are diagonal making them quite simple to numerically
evaluate. In this form the physical interpretation of these operators is most transparent. P is
the operator corresponding to a propagation of the pulse through a homogenous medium with
an index of refraction of n̄. Q(z) takes into account the difference n(z,x)− n̄, while C(z1,z2)
depends on the change in the refractive index over the step taken. Thus, in this sense we would
like to draw the analogy that Q(z) acts like the constant term of a Taylor’s series expansion, and
C(z1,z2) acts in a manner similar to the first derivative term in such a series. We can save some
additional matrix-vector multiplications by combining Q(zl+1)Q(zl)

Q(zl+1)Q(zl) =

[
I 0

−M−1S
(
N(zl+1)+N(zl)

)
S−1 Δz

4 I

]
. (28)

3. Numerical example

To test our method we will simulate beam propagation through a two-dimensional (Cartesian)
symmetric Epstein-layer waveguide tilted at an angle θ from the positive z axis [5]. Hard bound-
ary conditions where ψ (z,x0) = 0 and ψ

(
z,x f

)
= 0 are assumed. The eigenfunctions of the

transverse Laplace operator are then given by

φi (x) = sin

(
iπ

(
x f − x0

)x

)

. (29)

The resulting eigentransform matrix is given by the discrete Fourier matrix

Si, j =

√
2

Nx +1
sin

(
π (i+1)( j+1)

Nx +1

)
= S−1

i, j . (30)
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Table 1. Parameters used in the numerical calculations

n̄ = 2.1455 Δn = 0.003 x0 = 0 μm x f = 300 μm
w = 5 μm k0 = 4.88128 μm−1 z0 = 0 μm z f = 100 μm

This particular Fourier matrix was chosen because the hard boundary conditions at x0 and
x f are automatically satisfied. We do not need to include these points in our grid, defined by
Δx =

(
x f − x0

)
/(Nx +1) and Δz =

(
z f − z0

)
/Nz. The refractive index profile is

n(z,x) =

√√
√
√n̄2 +2n̄(Δn)sech 2

(
2
(
x̃cos(θ)− zsin(θ)

)

w

)

, (31)

where x̃ is a shifted coordinate to align the waveguide in the center of our computational re-
gion to make the hard boundary conditions as negligible as possible, Δn is the height of the
refractive index shift, w is the width of the waveguide. The shifted coordinate is given by
x̃ = x− (1/2)

(
x f − x0

)
+ (1/2)

(
z f − z0

)
tan(θ). The initial electric field is given by the ze-

roth order mode of the Epstein-layer waveguide

ψ (0,x) = sechW
(

2x̃cos(θ)
w

)
exp
(
iK0x̃sin(θ)

)
, (32)

Here, i is the unit imaginary number, not to be confused with the counting index used elsewhere.
W and K0 are given by

W =
1
2

(√
1+2w2k2

0n̄Δn−1

)
(33)

K0 =

√(
2W
w

)2

+(k0n̄)2. (34)

The exact solution for this tilted Epstein-layer waveguide is [10]

ψe (z,x) = sechW

(
2
(
x̃cos(θ)− zsin(θ)

)

w

)

exp
(

iK0
(
x̃sin(θ)+ zcos(θ)

))
. (35)

To measure the error we use the correlation factor,

Error(z) =

∣
∣
∣
∣
∣
∣
∣
1−

(∫ x f
x0 ψ∗ (z,x)ψ (z,x)dx

)2

(∫ x f
x0 ψ∗

e (z,x)ψe (z,x)dx
)2

∣
∣
∣
∣
∣
∣
∣
, (36)

as this provides a measure for both the profile shape and amplitude of the beam [5, 6].
C and CUDA versions of both the WASSS and HOWASSS methods were implemented. The

code was compiled using nvcc version 4.2 for CUDA code and gcc version 4.6.3 for the C code.
The code was run on a workstation equipped with an Intel Xeon X5960 CPU, which is a hyper-
threaded six-core CPU clocked at 3.47 GHz with 48 GB of RAM, and a NVIDIA QUADRO
6000 GPU, which has 448 CUDA cores at 574 MHz core clock speed (750 MHz memory clock
speed) and 6 GB of dedicated GPU DDR5 RAM.

The simulation was run using the parameters listed in Table 1. The value of k0 was selected
to ensure that we could include 1000 transverse modes while still keeping M real-valued. When
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Fig. 1. Error as a function of propagation distance for an aligned waveguide with Nx = 1000
for the (a) WASSS and (b) HOWASSS methods. Note that we have sampled the error every
0.5 mm, and not at every z step calculated, because the rapid oscillations would make the
graph difficult to read otherwise.

the waveguide was aligned (θ = 0◦) roughly an order of magnitude decrease in the error was
observed with the HOWASSS method over the WASSS method (see Fig. 1). However, the
improvement was more pronounced when we tilted the waveguide at an angle of 50 degrees,
especially for large step sizes (see Fig. 2). Figure 3 shows the calculated electric field next to
the exact solution to further illustrate the accuracy of the HOWASSS method. The simulations
shown in Figs. 1, 2, and 3 were run using double precision accuracy numbers on the GPU. Both
methods were capable of producing accurate results using single precision arithmetic, until
about Δz = 0.05 μm. At this point, round-off error began to affect the results of the HOWASSS
method due to the increased number of matrix-vector multiplications required in each time step.
The WASSS method does not suffer as quickly from this problem because it is computationally
more simple. The limit where round-off error begins to affect the double precision code was
not observed for either method.
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Fig. 2. Error as a function of propagation distance for a waveguide rotated 50 degrees with
Nx = 1000 for the (a) WASSS and (b) HOWASSS methods.
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Fig. 3. Plot of |ψ (z,x)| with Nx = 1000, Nz = 2000, and θ = 50◦ for the (a) HOWASSS
and (b) exact solutions for a waveguide tilted at 50 degrees.

4. Discussion

4.1. Stability

By virtue of being a higher order method, the HOWASSS method has improved stability over
the WASSS method (see Fig. 4). As we increase the tilt of the waveguide, the WASSS method
performs more poorly as the angle increases, and at large step sizes even shows signs of being a
bit unstable. However, the HOWASSS method actually becomes more accurate at larger angles.
Traditionally, beam propagation methods struggle to obtain accurate results when there are
rapid changes in the index of refraction. To simulate a rapidly changing index of refraction
we increase the change in the index between the waveguide and the surrounding medium, Δn,
while keeping the width of the waveguide fixed. We see that at a 50◦ waveguide tilt the WASSS
method actually becomes unstable with a large stepsize, while the HOWASSS is able to remain
stable for at least an additional order of magnitude increase in Δn. However, both methods do
loose accuracy as the change in the refractive index becomes steeper, but by decreasing Δz
accurate results can still be obtained in a reasonable run time. This same analysis was done for
a 0◦ tilted waveguide and the results were quite similar and so are not shown here.
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Fig. 4. (a) The maximum error obtained as a function of waveguide tilt angle showing that
the HOWASSS method actually gains a small amount of accuracy at larger angles. (b) The
maximum error obtained as a function of waveguide depth, Δn.
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Fig. 5. (a) Run times of HOWASSS and WASSS methods on the GPU and the single-core
CPU for 1000 propagation steps. (b) Comparison of HOWASSS method run times using
different number of cores on the CPU and using the GPU for 1000 propagation steps.

4.2. Speed

Computationally, the HOWASSS method requires the multiplication of matrices with vectors.
If we restrict Nx so that the matrix M is real then, for the example in Section 3, all the matrices
will be real, however the vector A will be complex. In general, the eigenfunctions and the
refractive index could be complex. However, for simplicity we will assume these to be real.

Diagonal matrix multiplication is equivalent to element-by-element vector multiplication.
Hence, multiplying an Nx ×Nx diagonal matrix by an Nx element complex vector requires 2Nx

operations. Multiplying an Nx×Nx dense matrix by an Nx element complex vector is equivalent
to performing 2Nx dot products, each requiring Nx multiplications and Nx − 1 additions, for
a total of 2Nx (2Nx −1) = 4N2

x − 2Nx operations. Applying P requires a total of 4 diagonal
matrix-vector multiplications for a total of 8Nx operations. Applying Q(zl+1)Q(zl) requires 2
diagonal matrix-vector multiplications, 2 dense matrix-vector multiplications, 2 vector-vector
additions, and 1 scalar-vector multiplication for a total of 8N2

x +6Nx = 2Nx(4Nx−3) operations.
Applying C(zl+1,zl) requires 4 dense matrix-vector multiplications, 1 vector-vector addition,
and 2 element-by-element exponential operations (assumed to only be 1 operation per element)
for a total of 16N2

x − 2Nx = 2Nx(8Nx − 1) operations. P is applied four times, Q(zl+1)Q(zl)
is applied twice, and C(zl+1,zl) is applied once each step, giving a total of 32N2

x + 42Nx =
2Nx(16Nx + 21) operations. Following the same logic for the WASSS method, we find that
it requires 8N2

x + 6Nx = 2Nx(4Nx + 3) operations. Note that this operation count differs from
the one reported by Clark and Thomas [6] because we are counting both multiplications and
additions in this calculation.

Furthermore, to leading order in Nx, the HOWASSS method is approximately a factor of
4 slower for a given Δz (see Fig. 5). However, the initial hypothesis was that a significant
improvement in accuracy may lead to a more efficient algorithm. To test this hypothesis, we
executed the HOWASSS and WASSS methods using the GPU implementation with various
step sizes, holding all other aspects of the problem constant. Figure 6 summarizes the result.
For a propagation length of 100 micrometers, and a waveguide tilt angle of 50 degrees, we show
the compute time per micron of propagation as a function of the maximum absolute error. For
two different values of Nx, the efficiency at constant error is better for the HOWASSS method,
as indicated by shorter compute times. In fact, for error values smaller than about 10−4, the
HOWASSS method is much better, with efficiency rapidly exceeding an order of magnitude for
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Fig. 6. Comparison of the HOWASSS method and WASSS method compute time per prop-
agation distance with Nx = 1000 and Nx = 2000. Both methods were run on the GPU.

absolute error values of less than 10−6.
The data presented in this paper was generated using double precision arithmetic. This does

not result in a significant difference in the run time when the code is run on a CPU. How-
ever, GPUs are intrinsically designed to deal with single-precision arithmetic. In order to com-
pute one double-precision number the GPU must perform two single-precision calculations
and some additional overhead to combine the result, leading to, at a minimum, a factor of two
speed-up when single-precision numbers are used. This speed-up also depends on the specific
graphics card used, as some have less capability than others when it comes to double precision
arithmetic. Rounding errors can affect the HOWASSS method if Nz is large, around 2000 for the
specific example considered in this paper. If the application does not require extreme accuracy,
then a substantial speed-up can be achieved by using single-precision arithmetic on the GPU.

4.3. Parallelization

Both the WASSS and HOWASSS methods readily lend themselves to parallelization. For our
implementation we chose to use both OpenMP, to make use of multi core CPUs, and NVIDIA
compute unified device architecture (CUDA) to make use of the processing power of the graph-
ics processing unit (GPU). Modern GPUs possess orders of magnitude more computational
power than the typical CPU. However, to completely utilize this power the algorithm must pos-
sess a very high level of parallelism to completely saturate the many processing units of the
GPU.

Unfortunately, neither the WASSS nor the HOWASSS method are ideal for utilizing the
full power of the GPU because many of the matrix-vector multiplications involve diagonal
matrices. Faster than their dense counterparts, these computationally reduce to simple element-
by-element vector multiplication. While this is a perfectly parallel operation, it does not offer
the large number of independent calculations needed to saturate the GPU. These element-by-
element vector multiplications suffer additionally from the fact that they require two memory
reads and one memory write to compute only one multiplication. On the GPU reading and
writing to memory is much slower than math operations. Given this, there is still a significant
speed-up when the code is run on the GPU versus on a single core of the CPU (see Fig. 5). This
speed-up was accomplished with little attention payed to optimization of the code. With further
optimization an additional factor of two or more would be likely. Additionally, extending this
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technique to even higher-orders might yield additional improvements.

4.4. Generalizations to other coordinate systems, boundary conditions, and higher dimen-
sions

Both the WASSS and HOWASSS methods can be generalized to different coordinate systems
or different boundary conditions. In fact the only complication is that the eigenfunctions and
eigenvalues must be known. For a more detailed discussion on this topic see Clark and Thomas
[6].

5. Conclusion

We have presented a method that is more efficient than previous non-paraxial beam propaga-
tion methods. The method casts the analytic solution of the Helmholtz equation as a Magnus
expansion. Keeping terms up to (Δz)3 in the Magnus expansion we use a symmetric operator
splitting technique in order to analytically reduce the exponential matrices into a more simple
form. The solution to the Helmholtz equation is then approximated via straightforward matrix
multiplication. We have demonstrated the method in a simple geometry with 2D Cartesian co-
ordinates with hard boundary conditions. The results obtained show our higher-order approach
significantly improves the overall efficiency, when measured as compute time per distance of
propagation, in cases where high accuracy results are required. The method can be easily ex-
tended to more generalized coordinate systems, higher dimensions, and various boundary con-
ditions, provided that the eigenfunctions and eigenvalues of the transverse Laplace operator can
be found for that geometry.
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